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ABSTRACT

A small heuristic data set is employed to demonstrate that (a)

regression approaches to ANOVA can be superior to classical ANOVA

with respect to statistical power against Type II error, and that

(b) classical regression analysis can be employed to test

hypotheses typically but incorrectly associated only with ANOVA,

i.e., polynomial trend and interaction hypotheses. Unlike OVA

methods, which require that the researcher discard information by

converting all independent variables to the nominal level of

scale, classical regression methods do not require that

predictors be nominally scaled. Thus, when researchers have data

including higher than nominally scaled predictors, regression can

yield results that more accurately reflect the reality that the

researcher purportedly wishes to study.
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Empirical studies of research practice in published, articles

suggest that ANOVA methods and their analogs (;.NOVA, ANCOVA,

MANOVA and MANCOVA--here collectively labelled OVA methods) are

among the most frequently employed techniques in educational

research, although the use 'of these methods does appear to be

consistently declining (Elmore & Woehlke, 1988; Goodwin &

Goodwin, 1985, Willson, 1980). This may be most fortunate,

because it can be argued that there are serious problems

associated with many OVA applications (Cohen, 1968; Thompson,

1986, 1988b).

The priMary difficulty with OVA methods is the requirement

that independent variables must all be nominally scaled. Since

many variables (e.g., aptitude) other than experimental condition

assignment and: sex are higher than nominally scaled, and since

sex is not usually of much interest as a research variable,

researchers frequently discard variance of other predictor

variables in order to implement OVA analyses. This "squandering

of information" can have serious consequences for the integrity

of research conclusions (Cohen, 1968; Thompson, I988b). Even when

OVA analyses are appropriate, regression approaches to-OVA using

planned contrasts offer important advantages over conventional

OVA methods (Thompson, 1985, I988d).

Although for various reasons (Thompson, 1981) some

researchers unconsciously resist the realization, it has been

increasingly recognized by more and more researchers that all

parametric methods are subsumed under the umbrella of what has

come to be called the "general linear model." All univariate

parametric methods (e.g., ANOVA, t-tests) are actually cases of
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multiple regression analysis, and can be implemented using

regression (Cohen, 1968). However, the converse is not true--that

is, regression cannot be implemented using its own special cases,

such as ANOVA or ANCOVA. This realization has important

implications for practice, exploied in some readable recent

textbooks (cf. Edwards, 1985; Pedhazur, 1982).

Similarly, more and more researchers have come to realize

that canonical correlation analysis subsumes all parametric

methods, both univariate and multivariate (e.g., MANOVA,

discriminant function analysis) (Knapp, 1978). Thompson (1988a)

employs a small example data set to illustrate how canonical

analysis Tian be employed to conduct the univariate and

muitivariae parametric methods that the technique subsumes as

special ..=ases. Again, the generality of the general linear model

suggests the important implication for practice that the .more

general analytic methods might beneficially be employed in more

research situations than is currently the case (Thompson, 1984).

The purpose of the present paper is to explore the

relationship between OVA methods and the more general analytic

case. Some researchers incorrectly presume that OVA methods

provide access to hypotheses that cannot be tested with

regression methods. For example, some researchers believe that

polynomial trends (i.e., linear and curvilinear prediction by

predictor variables) and interaction effects cannot be tested

using regression analysis. A small univariate (i.e., single

dependent variable) data set is employed to illustrate how these

hypotheses can be tested using multiple regression analysis.
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A Classical Factorial ANOVA Design

Table 1 presents scores on several variables for a

hypothetical sample of 20 subjects. The subjects are randomly

assigned to either one, two, three, four, or five minutes of

exposure to an experimental instructional method, the variable

labelIad "LEV5" 'in Table 1. The subjects have also been grouped

into high or low ability or aptitude levels ("LEV2"). Table 1

also presents the4 dependent variable scores ("DV") of the 20

subjects. And the table presents scores on other variables, to be

discussed subsequently.

INSERT TABLE 1 ABOUT HERE.

The data represent a classic 5x2 factor ANOVA problem, and

the design is balanced with two subjects in each of the design's

10 cells. Table 2 presents the ANOVA keyout for this problem

generated by the SPSS-X package.

INSERT TABLE 2- ABOUT HERE,

Regression Approach to 'ANOVA
Using Only Creation of a Variable Expressing Interaction

If the researcher desired to implement a GLM approach to

analyzing' the Table I data, the. first thing the researcher might

wish to do is to isolate some way of testing interaction effects.

Afterall, this is one benefit from factorial OVA methods, which

some researcher incorrectly believe is unavailable in the

regression case. The researcher may be aware that interaction

effects can be represented by what Kerlinger and Pedhazur (1973,

p. 414) have termed "product variables." Main effects are first

3
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translated into Z-score form, as has been done for "LEV5" and

"LEV2" in Table 1 (respectively, "ZLEV5" and "ZLEV2"). The

results are then simply multiplied times each other to create a

new variable ("ZINTER") for each person. For example, as reported

in Table 1, the first subject's score on "ZINTER" is 1.34350,

i.e., -1.3784 x -.97468.

The researcher then conducts a conventional regression

analysis, using "LEV5", "LEV2", and "ZINTER" to predict "DV". The

partial SPSS-X printout for this analysis is presented in Table

31. Table 4 illustrates the researcher's effort to recreate the

Table 2 keyout using the regression results. The researcher

examines the Table 3 printout only to finthe sums of squares

(SOS) at each step of the analysis. These values are then

subtracted from each other in the manner illustrated in Table 4,

and the remainder of the keyout is computed by the researcher by

hand.

INSERT TABLES 3 AND 4 ABOUT HERE.

Regrettably, the researcher finds these results rather

troubling, because the Table 2 and Table 4 results do not match,

as they should if a factorial ANOVA can indeed be implemented

using regression analysis. For example, the sums of squares for

the "LEV5" main effect in the Table 2 classical ANOVA is 6.800,

while the SOS for the same effect reported in Table is only

4.225. Similarly, the SOS for the two-way interaction effect in

Table 2 is 18.200, while the regression approach yields an SOS

for this effect of only 13.225.

4
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ReamIlm Approach moo, ANOVA, Using a Variable Expressing
Interaction and Orthogonal Polynomial Contrast Coding

The researcher, upon reflection, notes that the Table 4

keyout only invests one degree of freedom (df) to probe for the

"LEV5" main effect, while four degrees of freedom werespent to

produce the larger SOS for "LEV5" reported in the Table 2

classical ANOVA keyout. It seems reasonable that using more

degrees of freedom in the ANOVA to explain "DV" may have caused

the discrepancy between the effects reported in the two analyses.

The researcher consults several texts, fortunately including

rld.vards (1985) and Pedhazur (1982).. The researcher learns that

degrees of freedom are indeed like the probes used to explore a

"black box", and that in ANOVA each probe will explain a unique,

non-overlapping portion of the variance of "DV" when the probes

are perfectly uncorrelated with each other (sometimes called

"orthogonal"). The researcher decides to perform trend contraEts

using, what is called polynomial coding. While this sounds

awesome, the probes are actually listed in several books for

various research-situations (e.g., Hicks, 1973).

The four mairreffect codes for "LEV5" are listed in Table 1,

i.e., "LINEAR", "QUADRATC", "CUBIC", and "QUARTIC". These are the

four correct trend codes for a design way with five levels, such

as "LEV5" (Hicks, 1973). Following the.instructions of Edwards

(1985) and Pedhazur (1982), as reported in Table 1, the 10

'subjects in the low ability group ("LEV2" = 1) receive a "-1" for

the contrast variable for this way ("L2"), while the remaining

subjects receive a "+1". The interaction effect contrasts are

created by multiplying columns together. For example, "L2LIN" is

5



created by multiplying the "LINEAR" contrast for each subject

times the "L2" contrast.

Table 5 presents the partial SPSS-X printout when "DV" is

predicted with variables "LINEAR" through "L2QUAR". The

correlation matrix indicates that the contrasts or probes are

uncorrelated, as desired. The researcher uses the remainder of

the printout only for the purpose of determining SOS's for

various steps of analysis, as before. The resulting keyout for

thir5 research situation is computed by hand from the Table 5

results, and is reported in Table 6.

INSERT TABLES 5 AND 6 ABOUT HERE.

The Table 6 result is much more satisfying for the

researcher, since it appears comparable to the Table 2 classical

ANOVA outcome. For example, the omnibus effect size for

explaining "DV" with all predictors is identical (25.05 / 48.55 =

squared R ='51.6%). The results associated with "LEV2" and the

two'-way interaction effect are both the same.

At first glance the results for "LEV5" appear to be

different. But in reality the SOS for the effect (6.800) in both,

tables is the same. In the Table 2 classical ANOVA the omnibus

SOS for this main effect is 6.800 and the result is not

statistically significant (F = .583, df = 4/3A, 0.05). In the.

Table 6 regression analysis using polynomial orthogonal

contrasts, this main effect SOS has been split into four separate

components (4.225 + 2.161 + 0.400 + 0.014), each with 1/10

degrees of freedom.

However, one effect associated with "LEV5" is now

6
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statistically significant! The linear contrast has an effect size

of 8.7%, i.e., explains 8.7% of the variance in the dependent

variable, and F = 1.798 (p<A5). This, of course, is one

advantage of regression approadhes to ANOVA. Regression

approaches to ANOVA using a priori contrasts have more

statistical power against Type II error (Thompson, 1985). Thus,

regression approaches to ANOVA are usually superior to classical

ANOVA.

Another important insight can be acquired by comparing the

Table 6 results with the Table 4 results reporting the classical

regression analysis. The SOS (4.225) and the effedt size (8.7%)

for the "LINEAR" contrast in Table 6 is identical to the result

for "LEVS" reported for the Table 4 regression analysis.

Upon reflection., this should be sensible. Classical

regression analysis is based on correlatidn coefficients that are

sensitive only to linear relationship, as every elementary

statistics textbook repeatedly and emphatically emphasizes. The

linear component of "LEVS" that is common with "DV" involves an

effect size of 8.7%. This component is the only component

evaluated by classical regression analysis or by the "LINEAR"

contrast in the regression approach to ANOVA. The classical ANOVA

reported in Table 2, on the other hand,. measures curvilinear

relationship between an effect and the dependent variable. This

is also part of the reason why the effect sizes are larger for

the classical ANOVA results than for the classical regression

results, since the classical ANOVA results are sensitive to more

types of relationship among the variables. Of course, polynomial

7
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contrasts can be employed to make regression sensitive to

curvilinear relationships.

Classical Regression Analysis Testing Interaction and
Polynomlal Trend, without Orthogonal Contrasts

But classiczi1 regression analysis can be enployed to test

interaction and polynomial trends, without utilizing orthogonal

contrasts. In any regression analysis curvilinear effects of

predictors can be explored simply by raising predictors to

selected exponential powers. The computations reported in Table 7

explored linear (predictor raised to power "1"), quadratic (power

"2"), cubic (power "3"), and quartic (power "4") effects.

INSERT TABLE 7 ABOUT HERE.

In Table 7 "LEV5" already tests linear effects, since

raising a variable to power "1" has no effect. "QUADLEV5"

represents "LEV5" raised to the second power. "CUBLEV5" and

"QUARLEV5" represent, respecti ely, "LEV5" raised to the third

and fourth powers. Interaction effects are evaluated by

multiplying "LEV2" times each of the four exponential expressions

of "LEV5". Table 8 presents the partial SPSS-X printout reporting

an analysis of the Table 7 data.

INSERT TABLE 8 ABOUT HERE.

Table 9 presents the keyout computed by hand from the Table

8 results. As expected, the Table 9 results from this classical

regression analysis are directly comparable to those from the

classical ANOVA presented in Table 2. Figure 1 presents the

scattergram of "LEV5" and "DV", and the both the linear and the

8
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curvilinear prediction equations fir these data. The improved fit

of the curvilinear prediction using four exponential expressions

of "LEV5" can be seen in the figute.

INSERT TABLE 9 AND FIGURE 1 ABOUT HERE.

Conclusion

It has been demonstrated here that (a) regression approachs

to ANOVA can be superior to classical ANOVA with respect to

statistical power against Type II error, and that (b) classical

regression analysis can be employed to test hypotheses typically

but incorrectly associated only with ANOVA, i.e., polynomial

trend and interaction hypotheses. The real advantage of

classical regression analysis has not been il',".strated here.

Unlike OVA methods, which require that the researcher

discard informdtion by converting all independent variables to

the nominal level of scale, classical regression methods do not

requ1re that predictors be nominally scaled. Thus, when

researchers, have data including higher than nominally scaled

predictors, .regression can yield results that more accurately

reflect the reality that the researcher purportedly wishes to

study. In short, classical regression analysis warrants more

attenti .jn from educational researchers.

9
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LEV2
LEV5 DV

Table 1
Scores on Various Variables for 20

LINEAR CUBIC L2
ZLEV5 ZLEV2 QUADRATC QUARTIC

Subjects

L2QUAD L2QUAR
L2LIN L2CUB ZINTER

1 1 0 -1.3784 -.97468 -2 2 -1 1 -1 2 -2 1 -1 1.34350
1 1 2 -1.3784 -.97465 -2 2 -1 1 -1 2 -2 1 -1 1.34350
1 2 3 -1.3784 .97468 -2 2 -1 1 1 -2 2 -1 1 -1.34350
1 2 5 -1.3784 .97468 -2 2 -1 1 1 -2 2 -1 1 -1.34350
2 1 1 -.6892 -.97468 -1 -1 2 -4 -1 1 1 -2 4 .67175
2 1 3 -.6892 -.97468 -1 -1 2 -4 -1 1 1 -2 4 .67173
2 2 2 -.6892 .97468 -1 =1 2 -4 1 -1 -1 2 -4 -.67175
2 2 4 -.6892 .97468 -1 -1 2 -4 1 -1 -1 2 -4 -.67175
3 1 2 .0000 -.97468 0 -2 0 6 -1 0 2 0 -6 .00000
3 1 4 .0000 -.97468 0 -2 0 6 -1 0 2 0 -6 .00000
3 2 1 .0000 .97468 0 -2 0 6 1 0 -2 0 6 .00000
3 2 3 .0000 .97468 0 -2 0 6 1 0 -2 0 6 .60000
4 1 3 .6892 -.97468 1 -1 -2 -4 -1 -1 1 2 4 -.67175
4 1 5 .6892 -.97468 1 -1 -2 -4 -1 -1 1- 2 4 -.67175
4 2 0 .6892 .97468 1 -1 -2 -4 1 1 -1 -2 -4 .67175
4 2 3 .6892 .97468 1 -1 -2 -4 1 1 -1 -2 -4 .67175
5 1 4 1.3784 -.97468 2 2 1 1 -1 -2 -2 -1 -1 -1.34350
5 1 5 1.3784 -.97468 2 2 1 1 -1 -2 -2 -1 -1 -1.34350
5 2 2 1.3784 .97468 2 2 1 1 1 2 2 1 1 1.34350
5 2 5 1.3784 .97468 2 2 1 1 1 2 2 1 1 1.34350

Table 2
ANOVA Keyout for 5x2 Factorial Balanced ANOVA

Sum of Mean Sig EFFECT
Source of Variation Squares DF Square F of F SIZE
Main Effects 6.850 5 1.370 .583 .713

LEV5 6.800 4 1.700 .723 .596 14.00
LEV2 .050 1 .050 .021 .887 .1%

2-Way Interactions 18.200 4 4.550 1.936 .181
LEV5 LEV2 18.200 4 4.550 1.936 .181 .4%

Explained 25.050 9 2.783 1.184 .395
Residual 23.500 10 2.350
Total 48.550 19 2,555

Note. EFFECT SIZEs were computed by hand, and are not routinely
provided by SPSS-X.



Table 3
Partial SPSS-X Output Testing Only Linear Effects

* * * * MULTIPLE REGRESSION
Equation Number 1 Dependent Variable.. DV

* *

Beginning Block Number 1. Method: Enter LEV5
Variable(s) Entered on Step Number 1.. LEV5

Multiple R .29500
R Square .08702

DF Sum, of Squares
Regression 1 4.22500
Residual 18 44.32500
F = 1.71574 Signif F = .2067

Analysis of Variance

Beginning Block Number 2. Method: Enter
Variable(s) Entered on. Step Number 2.. LEV2

Multiple R
R Square

Regresqion
Residual -
F = .82072

Mean Square
4.22500
2.46250

LEV2

.29674 Analysis of Variance

.08805
DF Sum of Squares
2 4.27500

17 44.27500
Signif F = .4568

Mean Square
2.13750
2.60441

Beginning Block Number 3. Method: Enter ZINTER
VariPble(s) Entered on Step Number 3.. ZINTER

Multiple R
R Square

Regression
Residual
F = 3.00590

.60038

.36045
DF Sum of Squares
3 17.50000

16 31.05000
Signif F = .0612

'Analysis of Variance

Mean Square
5.83333
1.94063

Table 4
Keyout Computed by Hand from Table 3 Results

Previous
SOS .Reg-

Effect =
SOS-Reg SOS-

Meah
df 'Square F

Effect
Size

LEV5 4.225 4.225 1 4.225 2.177 8.7%
LEV2 4.225 4.275 0.050 1 0.050 0.026 0.1%
Inter 4.275 17.500 13.225 1 13.225 6.815 27.2%

Error 31.050 31.050 16 1.941
Total 48.550 19 2.555

13
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Partial SPSS-X Printouts

Mean Std Dev

Table 5
for Predicting "DV" with Contrasts

Variance
DV 2.850 1.599 2.555
LINEAR .000 1:451 2.105
QUADRATC .000 1.717 2.947
CUBIC .000 1.451 2.105
QUARTIC .000 3.839 14`. 737
L2 .000 1.026 1.053
L2LIN .000 1.451 2.105
L2QUAD .000 1.717 2.947
L2CUB .000 1.451 2.105
L2QUAR .000 3.839 14.737

Correlation Matrix:
DV LINEAR QUADRATC CUBIC QUARTIC L2 L2LIN L2QUAD L2CUB

LINEAR .295
QUADRATC .211 .000
CUBIC .091 .000 .000
QUARTIC .017 .000 .000 .000
L2 -.032 .000 .000 .000 .000
L2LIN -.522 .000 .000 .000 .000 .100
L2QUAD .288 .000 .000 .000 .000 .000 .000
L2CUB .136 .000 .000 .000 .000 .000 .000 .000
L2QUAR .034 .000 .000 .000 .000 .000 .000 .000 .000

* * * * MULTIPLE REGRESSION * * * *
Equation Number 1 Dependent Variable.. DV

Beginning Block Number 1. Method: Enter LINEAR
Variable(s) Entered on Step Number 1.. LINEAR

Multiple R
R Square

Regression
Residual
F = 1.71574

.29500 Analysis of Variance

.08702
DF Sum of Squares
1 4.22500

18 44.32500
Signif F = .2067

Mean Square
4.22500
2.46250

Beginning Block Number 2. Method: Enter QUADRATC
Variable(s) Entered on Step Number 2.. QUADRATC

Multiple R ..36261
R Square .13153

DF Sum of Squares
Regression 2 6.38571
Residual 17 42.16429
F = 1.28731 Signif F = .3016

Analyas- -of Variance-

Mean Square
3.19286
2.48025

Beginning Block Number 3. Method: Enter CUBIC
Variable(s) Entered on Step Number 3.. CUBIC

Multiple R
R Square

.37385

.13977

14
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Regression
Residual
F =

DF Sum of Squares
3 6.78571
16 41.76429

.86654 Signif F = .4787

Reati Square
2.26190
2.61027

Beginning Block Number 4. Method: Enter QUARTIC
Variable(s) Entered on Step Number 4.. QUARTIC

Multiple R
R Square

Regression
Residual
F =

.37425

.14006
DF Sum, of Squares
4 6.80000
15 41.75000

.61078 Signif F = .6612

Analysis of Variance

Mean- Square
1.70000
2.78333

Beginning Block Number 5. *Method: Enter L2
Variable(s) Entered on Step Number 5.. L2

Multiple R .37562 Analysis of Variance
R Square .14109

DF Sum of Squares
Regression 5 6.85000
Residual 14 41.70000
F = .45995 Signif F = .7995

Beginning Block Number 6. Method: Enter L2LIN L2QUAD L2CUB L2QUAR
Variable(s) Entered on Step Number 6.. L2QUAR

7.. L2CUB

Mean Square
1.37000
2.97857

Multiple R
R Square

Regression
Residual
F = 1.18440

.71831

.51596
DF Sum of Squares
9 25.05000
10 23.50000

Signif F = .3953

8.. L2QUAD
L2LIN

Analysis of Variance

Mean Square
2.78333
2.35000

Table 6
Keyout from Regression Analysis Using Contrasts

Previous
SOS- Reg

Effect =
SOS Reg SOS

Mean
df -Square F

Effect
Stze

LINEAR 4.225 4.225 1 4.225 1.798 8.7%
QUADRATC 4.225 6.386 2.161 1 2.161 0.919 4.5%
CUBIC 6.386 6.786 0.400 1 0.400 0.170 0.8%
QUARTIC 6.786 6.800 0.014 1 0.014 0.006 .0%
L2 6.800 6.850 0.050 1 0.050 0.021 0.1%
Inter 6.850 25.050 18.200 4 4.550 1.936 37.5%

Error 23.500 23.500 10 2.350
Total 48.550 19 2.555



Table 7
Table 1 Predictors Treated as if Intervally Scaled

LEV5 LEV2 DV QUADLEV5 CUBLEV5 QUARLEV5 ZINTER ZINTER2 ZINTER3 ZINTER4
1 1 0 1.00 1.00 1.00 1.34350 1.90 -2.62 3.61
1 1 2 1.00 1.00 1.00 1.34350 1.90 -2.62 3.61
1 2 3 1.00 1.00 1.00 -1.34350 3.80 -5.24 7.22
1 2 5 1.00 1.00 1.00 -1.34350 3.80 -5.24 7.22
2 1 1 4.00 8.00 16.00 . .67175 .47 -.33 .23
2 1 3 4.00 8.00 16.00 .67175 .47 -.33 .23
2 2 2 4.00 8.00 16.00 -.67175 .95 -.65 .45
2 2 4 4.00 8.00 16.00 -.67175 .95 -.65 .45
3 1 2 9.00 27.00 81.00 .00000 .00 .00 .00
3 1 4 9.00 27.00 81.00 .00000 .00 .00 .00
3 .) 2 1 9.00 27.00 81.00 .00000 .00 .00 .00
3 2 3 9.00 27.00 81.00. .00000 .00 .00 .00
4 1 3 16.00 64.00 256.00 -.67175 .48 .33 .23
4 1 5 16.00 64.00 256.00 -.67175 .48 .33 .23
4 2 0 16.00 64.00 256.00 .67175 .95 .65 .45
4 2 3 16.00 64.00 256.00 .67175 .95 ' .65 .45
5 1 4 25.00 125.00 625.00 -1.34350 1.90 2.62 3.61
5 1 5 25.00 125.00 625.00 -1.34350 1.90 2.62 3.61
5 2 2 25.00 125.00 625.00 1.34350 3.80 5.24 7.22
5 2 5 25.00 125.00 625.00 1.34350 3.80 5.24 7:22

Table 8
Partial SPSS-X Printout for True Regression Analysis for Table 7 Data

QUADLEV5 QUARLEV5 ZINTER3
DV

LEV5 .295
LEV5 LEV2 ZINTER CUBLEV5 ZINTER2

LEV2 -.032 .000
ZINTER -.522 .000 .000
QUADLEV5 .330 .981 .000 .000
CUBLEV5 .351 .943 .000 .000 .989
QUARLEV5 .363 .903 .000 .000 .968 .994
ZINTER2 .261 .000 .354 .000 .172 .293 .372
ZINTER3 .151 .895 .000 .29'8 .878 .855 .836 .000
ZINTER4 .271 .000 .275 .000 .174 .297 .378 .983 .000

* * * *
Equation Number 1

S 1'0 11,
Dependent Variable.. DV

* * * *

Beginning Block Number 1. Method: Enter LEV5
Variable(s) Entered on Step Number 1.. LEV5

Multiple R .29500 Analysis of Variance
R Square .08702

DF Sum of Squares Mean Square
Regression 1 4.22500 4.22500
Residual 18 44.32500 2.46250
F = 1.71574 Signif F = .2067
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Beginning Block Number
Variable(s) Entered on

Multiple R
R Square

DF
Regression 2

Residual 17
F = 1.28731.

Beginning Block Number
Variable(s) Entered on

Multiple R
R Square

Regression
Residual
F = .86654

2. Method:
Step Number

36267
13153

Enter QUADLEV5
2.. QUADLEV5

Analysi6 6-f VaYience

Sum of Squares
6.38571
42.16429

Signif F = .3016

3. Method: Enter
Step Number 3..

.37385

.13977
DF
3

16

Beginning Block Number
Variable(s) Entered on

Multiple R
R Square

Regression
Residual
F = .61078

.3

.1
DF
4

15

Beginning Block Number
Variable(s) Entered on

Multiple R
R Square

Regression
Residual
F.=

Mean Square
3.19286
2.48025

CUBLEV5
CUBLEV5

Analysis

Sum of Squares
6.78571
41.76429.

Signif F = .4787

4.
Step

of Variance

Mean Square
2.26190
2.61027

Method: Enter QUARLEV5
Number 4.. QUARLEV5

7425 Analysis
4006

Sum of Squares
6.80000
41.75000

Signif F = :6612

5. Method: Enter
Step Number 5..

.37562

.14109
DF
5

14

of Variance

Mean Square
1.70000
2.78333

LEV2
LEV2

Analysis of Variance

Sum of Squares Mean Square
6.85000 1.37000
41.70000 2.97857

.45995 Signif F = .7995

Beginning Block Number 6. Method: Enter ZINTER
Variable(s) Entered on Step Number 6.. ZINTER

R- -64303_
R Square .41349

Regression
Residual
F = 1.52751
. . .

Beginning Block Number
Variable(s) Entered on

DF
6

13

Analysis of Variance

Sum of Squares
20.07500
28.47500

Signif .F = .2449

Mean Square
3.34583
2.19038

7. Method: Enter ZINTER2 ZINTER3 ZINTER4
Step Number 7.. ZINTER4

8.. ZINTER3
9.. ZINTER2
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Multiple R
R Square

Regression
Residual 10- 23.50000.
F = 1.18440 Signif F = .3953

.71831

.51596
DF Sum of Squares
9 25.05000

Analysis of Variance

Mean Square
2.78333
2.35900

Table 9
Keyout for True Regression Case

Previous - Effect = Mean
SOS Reg SOS Reg SOS df Square F

Effect
Size

LEV5 4.225 4.225 1 4.225 1.798 8.7%
QUADLEV5 4.225 6.386 2.161 1 2.161 0.919 4.5%
CUBLEV5 6.386 6.786 0.400 1 0.400 0.170 0.8%
QUARLEV5 6.786 6.800 0.014 1 0.014 .0.006 .0%
LEV2 6.800 6.850 0.050 1 0.050 0.021 0.1%
ZINTER 6.850 20.075 13.225 1 13.225 5.628 27.2%
Others 20.075 25.050 4.975 3 1.658 0.649 10.2%

Error 23.500 23.500-10 2.350
Total 48.550 19 2.555



Figure 1
Plot of Linear and Curvilinear Regression Equations
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Note. The case numbers of each of the 20 subjects from
Table 1 are presented in the scattergram.
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interact.sps
APPENDIX A:

SPSS-X CONTROL CARDS FOR EXAMPLES

TITLE''DEMONSTRATION OF INTERACTION WITH REGRESSION'
FILE' wing BT/NAME='INTERACT.DAT'
DATA LIST-FILE=BT/LEV5 1 LEV2 3 DV 5

.-. SUBTITLE -!. 1 CREATE-Z-SCORES-FOR-INTERACTIOW'COMPUTATION1
DESCRIPTIVES VARIABLES=LEV5 TO DV/SAVE/STATISTICS=ALL
SUBTITLE '#2 CLASSICAL 2x4 FACTORIAL ANOVA'
ANOVA DV BY LEV5(1,5) LEV2(112)/STATISTICSALL
SUBTITLE '#3 CREATE CONTRASTS TO TEST POLYNOMIAL TREND'
COMPUTE LIFEAR=0
IF '(LEV5 EQ 1ILINEAR=-2
IF (LEV5 EQ 2)LINEAR=-1
IF (LEV5 EQ 4)LINEAR =1
IF 1LEy5, EQ,5ALINEAR=2
COMPUTE'QUORATC=LINEAR
IF p4v5 EQ 1)QUADRATC=2
IF (LEV5 EQ 3)QUADRATC=-2
IF (LEV5 EQ 4)QUADRATC=-1
COMPUTE CUBIC =O
IF (LEV5 EQ 1)CUBIC=-1
IF (LEV5 EQ 2)CUBIC=2
IF (LEV5 EQ 4)CUBIC=-2
IF (LEV5 EQ 5)CUBIC=1
COMPUTE QUARTIC=1
IF (LEV5 EQ 2)QUARTIC=-4
IF (LEV5 EQ 3)QUARTIC=6
IF .(;LEV5 EQ 4)QUARTIC=-4
IF (LEV2 EQ 1)L2=-1
IF 1-LEV2-EQ 2)1.2=1
COMPUTE L2LIN=L2*LINEAR
COMPUTE L2QUAD=L2*QUADRATC
COMPUTE L2CUB=L2*CUBIC
COMPUTE L2QUAR=L2*QUARTIC
PRINT FORMATS- LINEAR TO L2QUAR(F3.0)
LIST VARIABLES =LEV5 TO DV LINEAR TO L2QUAR
SUBTITLE '#4 RUN TREND TEST ANOVA USING REGRESSION'
REGRESSION VARIABLES=DV LINEAR TO L2QUAR/DESCRIPTIVES=ALL/

DEPENDENT=DV/ENTER LINEAR/ENTER QUADRATC/ENTER CUBIC/
ENTER QUARTIC/ENTER L2/ENTER L2LIN TO L2QUAR

SUBTITLE 45 REGRESSION RESULTS **LINEAR EFFECTS ONLY'
COMPUTE ZINTER=ZLEV5*ZLEV2
PRINT FORMATS ZINTER(F8.5)
LIST VARiABLES=ALL/CASES=50
REGRESSION VARIABLES=LEV5 TO ZINTER/DESCRIPTIVES=ALL/DEPENDENT=DV/
ENTER LEV5/ENTER LEV2/ENTER ZINTER

'SUBTITLE '#6 REGRESSION RESULTS **CURVILINEAR EFFECTS'
--.~COMPUTE-QUADLEV5=LEV5**.2,
COMPUTE CUBLEV5=LEV5**3
COMPUTE QUARLEV5=LEV5**4
COMPUTE ZINTER2=(ZLEV5**2)*LEV2
COMPUTE ZINTER3=(ZLEV5**3)*LEV2
COMPUTE ZINTER4=(ZLEV5**4)*LEV2
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LIST VARIABLES=LEV5 TO DV QUADLEV5 TO QUARLEV5 ZINTER ZINTER2 TO
ZINTER4/CASES=50

'REGRESSION VARIABLES=DV LEV5 LEV2 ZINTER QUADLEV5 TO ZINTER4/
DESCRIPTIVES=ALL/
CRITERIA=TOLERANCE(.00000001)/DEPENDENT=DV/
ENTER LEV5/ENTER QUADLEV5/ENTER CUBLEV5/ENTER QUARLEV5/
ENTER LEV2/ENTER ZINTER/ENTER ZINTER2 TO ZINTER4

-----SUBTITLt-Tf7 SHOW PREDICTED DV USING EXPONENTIALS'
COMPUTE DVLINEAR=1.875+(.325*LEV5)
COMPUTE DVPOLYN0=2.75-(.583333*LEV5)+(-479167*QUADLEV5)

-(.166667*CUBLEV5)+(.020833*QUARLEV5)
PRINT FORMATS DVLINEAR DVPOLYNO(F8.5)
LIST VARIABLES=LEV5 DV DVLINEAR DVPOLYNO/CASES=50
PLOT TITLE='DV PREDICTED ONLY LINEARLY'l/

HORIZONTAL='VARIABLE: LEV5' MIN(1) MAX(8)/
VERTICAL='DEPENDENT VARIABLE'/PLOT=DV,WITH LEV5
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